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Abstract

Phase-plane and small-parameter asymptotic techniques are used to analyze systems
of ordinary differential equations that describe the transient behavior of non-Newtonian
fluids in shear flow. These systems approximate the partial differential equations that
derive from three-dimensional balance laws and from differential constitutive models for
highly elastic liquids. Two models are considered: one with a single relaxation time and
small Newtonian viscosity: the other with two relaxation times and no Newtonian viscosity.
Both possess the key feature that the variation of steady shear stress with strain rate is
not monotone.

The analysis shows that both models exhibit several distinctive phenomena: spurt,
shape memory, hysteresis, latency, and normal stress oscillations. The predictions for the
spurt phenomenon agree quantitatively with experimeuncal results for polymer melts; the
other new phenomena. which were discovered recently in numerical simulation. should also

be observable in rheological experiments. .
S e

AMS (MOS) Subject Classifications:  34C35, 34D10. 34E05. 35L60. 35L65. 35L67, 65M99.
65N 30, 73F15. 76A05, 76A10

ey Words: quadratic ODE. phase plane, global dynamics, asymptotics. non-Newtonian
shear flow, spurt. shape 1nemory, hysteresis, latency

'Center for the Mathematical Sciences University of Wisconsin-Madison. Madison, W1
53705.

Zalso Department of Engineering Mechanics.

3also Department of Mathematics.

talso Computer Sciences Department.

*Supported by the U. S. Army Research Office under Grant DAALQO03-87-1-0036. the
National Science Foundation under Grants DMS-8712058 and DMS-8620303, and the Air
Force Office of Scientific Research under Grants AFOSR-87-0191 and AFOSR-85-0141.




1. Introduction

The purpose of this paper is to analyze novel phenomena in dynamic shearing flows of
non-Newtonian fluids that are important in polymer processing [15]. One striking effect,
called the “spurt” phenomenon, was observed by Vinogradov et al. [17] in experiments con-
cerning quasi-static flow of monodispersive polyisoprenes through capillaries. They found
that the volumetric flow rate increases dramatically at a critical stress that is independent
of molecular weight. Until recently, spurt has been associated with failure of the polymer
to adhere to the wall [5]. The focus of our current research is an alternative explanation
of spurt and related phenomena.

The present paper analyzes systems of ordinary differential equations that approxi-
mate the dynamics of one-dimensional shear flow of highly elastic non-Newtonian fluids
at low Reynolds number. The analysis reveals several distinctive phenomena related to
spurt: shape memory, hysteresis, latency, and normal stress oscillations. Furthermore,
the comparison two different viscoelastic fluid models shows that the effect of a second
relaxation time is similar to that of Newtonian viscosity.

The essential aspects of spurt experiments are reflected in one-dimensional shear flow
through a slic die, which is governed by fluid balance laws and constitutive relations. The
kev feature of constitutive relations that exhibit spurt is a non-monotonic relation between
the steady shear stress and strain rate. This causes jumps in the steady strain rate to form
when the driving pressure gradient exceeds a critical value; such jumps correspond to the
sudden increase in volumetric flow rate observed in the experiments of Vinogradov et al.
The constitutive models we study derive from three-dimensional differential constitutive
relations with multiple relaxation times (based on work of Johnson and Segalman [8] and of
Oldrovd [14]). These models lead to systems of partial differential equations that are evo-
lutionary, are globally well-posed (in a sense described below), and possess discontinuous
steady states that explain spurt effects.

The Johnson-Segalman-QOldroyd shear flow equations were investigated using numer-
ical sirmulation in Refs. [9, 11]. Transient flows at high Deborah (Weissenberg) number
and low Reynolds number exhibited spurt, shape memory, and hysteresis. Moreover, other
effects were evident, such as latency, normal stress oscillations, and molecular weight de-
pendence of hysteresis. A principal conclusion is that satisfactory explanation of the spurt
phenomenon requires understanding the full dynamics of the flow, not only steady flows.
Furthermore it was shown [11] that the equations reduce to planar systems of ordinary dif-
ferential equations in the flow regime appropriate to the spurt experiments. The objective
of the present paper is to study the reduced dynamical systems using analytical methods
and to verify the dramatic implications of numerical simulation.

Earlier work has drawn connections between spurt phenomena and non-monotone
constitutive relations. Hunter and Slemrod [7] studied the qualitative behavior of discon-
tinuous steady states in a simple one-dimensional viscoelastic model that exhibits spurt,
shape memory, and hysteresis. Their model contrasts with the ones studied here, however,
in that the effects observed in their model are related to the linear instability and loss of
evolutionarity of the flow at certain Deborah numbers.

The two svstemns of partial differential equaiions that we use to model shear flow
through slit dies are formulated in Sec. 2. For the first system the total shear stress
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1s decomposed into a polymer contribution, evolving in accordance with a differential
constitutive relation with a single relaxation time, and a Newtonian viscosity contribution
[system (JSO) in Sec. 2]. The second system is based on a differential constitutive law
with two widely spaced relaxation times but no Newtonian viscosity [system (JSO;) in
Sec. 2]. We shall show that the dynamics of these two models is similar; this suggests that
the qualitative behavior we find is not special to the particular viscoelastic models we have
analyzed.

For the highly elastic and very viscous polyisoprenes used in the spurt experiment,
the ratio a of Reynolds number to Deborah number is several orders of magnitude smaller
than the ratio ¢ of Newtonian viscosity to shear viscosity. This implies that the flow
equations (JSO) are approximated, at each fixed position z in'the channel, by the following
dynamical system [11]:

&=(Z+1)(T;U)-—a,

Z:—U(T_d)—z.
€

Here the dot denotes the time derivative and T = fz, with f being the driving pressure
gradient.

Although it has not been proved mathematically that solutions of system (1.1) ap-
proximate solutions of (JSQ), this conclusion is reinforced by some analytical results as
well as by numerical experiments. Nohel, Pego and Tzavaras [13] established that dis-
continous steady states are stable in a simple model in which the polymer shear stress
satisfles a single differential constitutive relation; this model can be arranged to have the
same behavior in steady shear as system (JSO). Research in progress suggests that this
is true also of the full systems (JSO) and (JSO;), at least when « is sufficiently small.

Analysis of system (1.1) is carried out in Sec. 3. We show that steady states of sys-
tem (JSO), some of which are discontinuous, correspond to families of critical points of
the dynamical system. We deduce the local characters of the critical ooints, and prove that
the system has no periodic orbits or closed separatrix cycles. More: er we determine the
global dynamics completely through a phase-plane analysis; this is a: nplished by con-
structing a natural Lyapunov-like function. Thus we identify the globally asymptotically
stable steady states for each position z.

The same approximation in the model (JSO:) leads to the study a similar but more
complicated dynamical system. In Sec. 4 we show that, in the relevant range of parameters,
the essential dynamical features of the latter system are qualitatively the same as those of
system (1.1).

In Sec. 5 the results of Secs. 3 and 4 is applied to explain spurt, shape memory, hystere-
sis, and other effects observed in the numerical simulations. Thic involves understanding
how the phase portraits of system (1.1) change as T is varied. In Sec. 6 we develop asymp-
totic expansions in powers of ¢ of solutions of the dynamical systems; this enables us to
explain the latency effect (a pseudo-steady state that precedes spurt). The asymptotic
analysis also permits a more quantitative comparison of the dynamics of the two constitu-
tive models when ¢ is sufficiently small. In Sec. T we discuss physical implications of our

(1.1)
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results, particularly those predictions that warrant testing by rheological experiment.

Finally, in Sec. 8, we draw certain conclusions: although the analysis in this paper
applies only to the special constitutive models we have studied, we expect that the qual-
itative features of our results appear in a broad class of non-Newtonian fluids. Indeed,
numerical simulation by Kolkka and lerley [10] shows that another model with a single
relaxation time and Newtonian viscosity exhibits similar character.

2. Mathematical Formulation of Generalized Johnson-Segalman Models

The motion of a fluid under incompressible and isothermal conditions is governed by
the balance of linear momentum

p[%t:-+v-Vv]=V-S. (2.1)

Here p is the fluid density, v is the particle velocity, and S is the total stress tensor. The
response characteristics of the fluid are embodied in the constitutive relation for the stress.
For viscoelastic fluids with fading memory, these relations specify the stress as a functional
of the deformation history of the fluid. Many sophisticated constitutive models have been
devised: see Ref. [2] for a survey. In the prescnt work, we focus on a class of multi-mode
differential models. These models generalize the Johnson-Segalman model [8] by allowing
for a distinct slip parameter for each mode; alternatively, one can regard each mode to
be governed by a special case of the Oldroyd constitutive equation [14]. As discussed in
Secs. 1 and 8, we believe that qualitative aspects of our results are not limited to these

particular models.
To specify these constitutive relations, we decompose the total stress as

S=—pl+2yD+1I. (2.2)

In this equation, p is an isotropic pressure (which is determined from the incompressibility
constraint) and 7 is the coefficient of Newtonian viscosity; we let D := 1 [Vv + (Vv )T]
and 2 := % [Vv - (Vv )T] be the symmetric and antisymmetric parts of the velocity gra-
dient Vv, which has components (Vv )}, := dv*/9z’. The tensor II is the non-Newtonian
extra stress, which we decompose into partial stresses:

M=) =;. (2.3)

Each partial stress x; is specified by the differential constitutive law

x; =2u;D = Ay (2.4)
where p
x, = -5’3 +(v-V)x; = 2, Vv = (V)T x; + (1 - a;) (x;D + Dx;) (2.5)
-4
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is the objective time derivative of x; with slip parameter a;. The parameters p; are elastic
shear moduli, and the A; are relaxation rates; the quotients uj/A; are shear viscosities.

Essential properties of constitutive relations are exhibited in simple planar Poiseuille
shear flow. With the flow aligned along the y-axis (see Fig. 1), the flow variables are
independent of y. Therefore the velocity field is v = (0, v(z,?)), and the balance of mass
is automatically satisfled. Furthermore, the components of each partial stress tensor «;
can be written %% = 7,(z,t), x;¥ = x/* = 0;(z,t), and x}¥ = 7j(z,t), while the pressure
takes the form p = po(z,t) — f(t)y, f being the pressure gradient driving the flow. In these
terms. Egs. (2.4) become

Tie + (1 = aj)ojve = =Aj7; ,

gje = [3(1+ ;)7 = 3(1 = aj)7; + pj] vz = =Xjo; (2.6)
Tit — (1 + aj)djv,: = —-/\j'rj .
i y

NN

T
—h/2 0 B2
Fig. 1: Shear flow through a slit-die.
For each j, we introduce the variables
Z; = 3(1+a;)7; = 3(1 = aj)7, (27)
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and
Wj = ~3(1 +a;)7 = 3(1 = aj)7; . (2.8)

Taking linear combinations of the first and last of Eqs. (2.6) yields an equivalent pair
of equations for Z; and W;. The equation for W; is W;, = —A;W;; noting that W;
must remain finite as ¢ — —oo, we conclude that W; = 0. Thus the two evolution
equations for v; and 7; can be replaced by a single equation for Z;. Furthermore, Z; =
—3(1 = a?)(rj — 7;), so that Z; represents a contribution to the principal normal stress
difference, Z;n:l (xj-’y - x)"’) = E;:__l (r5 — )

With these observations, Eqgs. (2.6), combined with the balance of linear momentum,
Eq. (2.1), reduce to

pvt — Zajz = Tlvzz+f j
7=t (2.9)
oie = (Zj + pj) vz = =Ajoj ,

Zj + (1 - a?) TV = —A;Z; .

This system serves as a basis for the flow problems discussed below. For later reference,
notice that the momentum equation in Eq. (2.9) can be written as pv, — T: = f, where

T := Z oj +nuz (2.10)

i=1

is the total shear stress. If n = 0, it is readily shown that system (2.9) is hyperbolic if
Y =1(Z; + pj) 2 0, with wave speeds + [p‘l Y2+ yj)l/2] and 0 (repeated 2m — 1
times). Moreover, for initial-boundary-value problems appropriate for shear flow, and for
smooth data compatible with the boundary conditions, techniques in Ref. [16] can be
used to establish global well-posedness of classical solutions if the data have small total
variation. and finite-time blow-up of classical solutions if the data have large variation.

If n > 0, general theory developed in Ref. 13, Sec. 3 and App. A] yields global
existence of classical solutions for smooth initial data of arbitrary size, and also existence
of almost classical, strong solutions with discontinuities in the initial velocity gradient and
in the stress components; the latter result allows one to prescribe discontinuous initial data
of the same type as the discontinuous steady states studied in this paper.

In what follows, we will consider two special cases: (A) the case of a single relaxation
time (m = 1) in the presence of Newtonian viscosity (n # 0); and (B) the case of two
relaxation times (m = 2) but no Newtonian viscosity (n = 0). The study of these two
models determines how the effect of Newtonian viscosity compares to the effect of a second
relaxation time. In both cases we study the Poiseuille shear flow between parallel plates

located at z = £h/2 (cf. Fig. 1).




A. Single Relaxation Time. To simplify notation, we omit the subscript j, and we
nondimensionalize the variables by scaling distance by &, time by A~™1, and stress by p.
Furthermore, if we replace o, v, and f by & := (1 — a?)*/?0, 4 := (1 — a?)}/2y, and
f = (1—a?)Y2f, respectively, then the parameter a disappears from Egs. (2.9). Since no
confusion will arise, we omit the caret. There are two essential dimensionless parameters:

a:=ph2\/u , (2.11)
a ratio of Reynolds number to Deborah number; and

e=nAp, (2.12)

a ratio of viscosities.
The resulting initial-boundary-value problem governing the flow [11] is the system

ovy — 0 =€vz.+ f,

ot~ (Z + 1) =~0, (JSO)
Zt +ov = -Z

on the interval {—1/2,0], with boundary conditions
v(—=1/2,t) =0 and wv.(0,t)=0 (BC)
and initial conditions
v(z,0) = (z), o(z,0)=00(z), and Z(z,0)= Z¢(z), (IC)

where vo(~1/2) = 0, v4(0) = 0 and 0¢(0) = 0. When ¢ =0, and Z +1 2 0, the system is
hyperbolic, with characteristics speeds 0 and £{(Z + 1)/a]'/? and 0.

The steady-state solutions of system (JSO), when the forcing term f is a constant
f. play an important role in our discussion. Such a solution, denoted by v, 7, and Z, can
be described as follows. The stress components & and Z are related to the strain rate 7

through

Uz
7= (2.13)
and _ .
Z+1=1+5i . (2.14)
Therefore. the steady total shear stress 1 := & + ¢7 is given by T = w(7;), where
w(s) := 7 _:32 +es . (2.15)

The properties of w. the steady-state relation between shear stress and shear strain
rate. are crucial to the behavior of the flow. By symmetry, it suffices to consider s 2 0.
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For all ¢ > 0, the function w has inflection points at s = 0 and s = /3. When ¢ > 1/8,
the function w is strictly increasing, but when £ < 1/8, the function w is not monotone.
Lack of monotonicity is the funda.rnenta.l cause of the non—Newtonian behavior studied in

this paper, so hereafter we assume that ¢ < 1/8.
The graph of w is shown in Fig. 2. Specifically, w has a maximum at s = s3; and a

minimum at s = S, Where

1/2
1—-2eF+/1-8¢
T J : (2.16)

SMySm = [ 0

respectively, at which points it takes the values Ty = w(sy) and T := w(sn,). The

function w has an inflection point at sjpg = V3. Asec — 1/8 from below, t;he two extrema of
w coalesce at sijnp. Another limit, € — 0, occurs in applications to rheologlcal experiments

(see Sec. 6); in this vein, we record the following asymptotic formulae:

sy =1+2s+6e*+0(%), (2.17)

Tyu=1/2+c+e+0(%), (2.18)

sm=e 1~ (3/°)e - (25/8)” + O(¢™)] (2.19)

Tm=e?2—-¢—~(5/4)2+0() . (2.20)

The momentum equation, together with the boundary condition at the centerline,

implies that the steady total shear stress satisfles T = — fz forevery z € [—%, 0]. Therefore,
the steady velocity gradient can be determined as a function of z by solving

w(T;) = —fz . (2.21)

Equivalently, a steady state solution U, satisfles the cubic equation P(v;) = 0, where
P(s):=es®*~Ts*+(1+e)s-T. (2.22)

The steady velocity profile in Fig. 3 is obtained by integrating ¥; and using the boundary
condition at the wall. However, because the function w is not monotone, there might
be up to three distinct values of T, that satisfy Eq. (2.21) for any particular z on the
interval [~1/2,0]. Consequently, ¥, can suffer jump discontinuities, resulting in kinks in
the velocity profile (as at the point z, in Fig. 3). Indeed, a steady solution must contain
such a jump if the total stress Tway = f/2 at the wall exceeds the total stress Ty at the
local maximum M in Fig. 2.

Let us describe in more detail the analytical solutions for steady flow fields in two
instances: subcritical flow (havmrr no kinks) and supercritical low with one kink (as is
pictured in Fig. 3). To this end, it is useful to define $,4p(7T") for Tm<TandT < -T,
be the root s of w(s) = T with largest absolute value, while s4,(7T) for -Ty <T< TM
is the root with smallest absolute value. Then we define the following antiderivatives:

T
Vsup(-r) = f 1/ 3sup(T) dT’ ,

—fz
Viep(z) = F / seun(T)dT .

-8~
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W
Twa.Ll m )~
" M =7
T\/[ — B C = =
7+ == slope €
m ///m
P -
) O B
Fig. 2: Total steady shear stress T vs. shear strain rate v for
steady flow. The case of three critical points is illustrated; other
possibilities are discussed in Sec. 3.
Because T(z) = —fz, the steady velocity field is given as follows:
subcritical flow:
U(z) = Vaub(z) — Vaun(—1/2) ; (2.24)
supercritical flow:
- _ %up(r)_mup(‘l/g) y Isl't y 99
v(z) - { I/sup(-rt) -+ I/sub(:z;) - ‘/Sub(‘r‘) y T > T, y (-“-5)

where z. is the location of the jump in T, which is related to the stress T, at the discon-

tinuity by o
T, = ‘%T:/Twall . (226)

Determination of z. and T. from the system dynamics is discussed in Sec. 6. Integrating
the velocity with respect to r yields the flow rate per cross-section

Q:= 2/0 v(z)dz . (2.27)

-1/2
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Fig. 3: Velocity profile for steady flow.

This quantity is the one most easily observed experimentally and, along with Ty, is the
pomary datum describing the spurt phenomenon reported by Vinogradov et al. [17].

This approach to obtaining analytical steady flows, if applied directly using the cubic
formula. ylelds an expression for ¥ that is intractable. An alternate approach is to integrate
the asvmptotic expression for U, that is obtained in Sec. 6. This is straight-forward and
results in a fairly compact closed-form formula [18]. On the other hand, changing variables
of integration from from shear stress to strain rate in Eqgs. (2.23), yields integrals that can
be evaluated explicitly; we refer to Ref. (18] for details of this development.

B. Two Relaxation Times. By analogy with the previous model, we nondimensionalize
the variables by scaling distance by A, time by AJ!, and stress by u;; also, we replace o,
v, and f by &, := (1 = a?)"2a,, 5 := (1 —a})/?y, and f := (1 - a?)!/2f, respectively, and
we omit the caret. It proves convenient to choose dimensionless variables as follows:

a:=ph®*A/uy (2.28)
B = pa/p, (2.29)
§:=(1-a3)/(1—a}), (2.30)
K= Aypa/(Aapy) , (2.31)

~10-




In this notation, the initial-boundary-value problem for the system becomes

av, ~ [0y + 02 = f
o1 —~(Z; + 1)y = -0,
Zy+ o, =—21, (JSO2)
o2t = (Z2 + B)vz = =" fo2
Zgt + Sogv, = =732,
on the interval [—1/2,0], with boundary conditior.s (BC) and initial conditions v(z,0) =

vo(z) and |

O'J'(;Z,‘,O) = 0'01‘(1') and Zj(I,O) = ZOj(I) ’ - (ICJ)

where j = 1,2; again we require that ve(-1/2) =0, vh(0) = 0, and 00;(0) = 0. The
condition for hyperbolicity of system (JSO2) is Z1 +1 + 22 + B > 0, in which case the
characteristics speeds are 0 (repeated three times) and £{(Z; +1+ 22 + B)/a] 2.

The steady-state solutions of system (JSO2) are given by

— U,
gy = -2
1+ 732
Tz (2.32)
— KUz
G2 = -

and

1 -2
T (2.33)

Avain. the steady total shear stress T = G, + 7, satisfles T= —Tz:; thus the steady state
solution 7, satisfies the quartic equation Py(7;) =0, where

—
.

Py{s) = —T6r*37%s* + (k + §r237 s = T(1 + 52372 +(1+k)s =T (2.34)

We note that if § = 0 and & = ¢, then P, = P, and the steady states of system (JSO-)
and of system (JSO) coincide.
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3. Phase Plane Analysis for System (JSO) When a =0

A great deal of information about the structure of solutions of system (JSO) can be
garnered by studying a system of ordinary differential equations that approximates it in
a certain parameter range. Motivation for this approximation comes from the following
observation: in experiments of Vinogradov et al. [17], @ = ph?A%/u is of the order 10712;
thus the term av; in the momentum equation of system (JSO) is negligible even when v, is
moderately large. We are led to study the approximation to system (JSO) obtained when
a = 0. The behavior of solutions of the resulting dynamical system offers an explanation for
several features of the solutions of the full system (JSQ) observed in the computations of
Refs. [9, 11]; in fact, these calculations prompted the following analysis, which determines
the dynamics of the approximating system completely.

When a = 0, the momentum equation in system (JSO) can be integrated, just as in
the case of steady flows, to show that the total shear stress T := o + ¢v, coincides with
the steady value T(z) = —fz. Thus T = T(z) is a function of z only, even though o and
v; are functions of both z and ¢. The remaining equations of system (JSO) yield, for each
fixed z, the autonomous, quadratic, planar system of ordinary differential equations

&:(Z+1)(T;a)—a,

(3.1)

Here the dot denotes the derivative d/dt. We emphasize that for each f, a different
dynamical system is obtained at each z on the interval [—~1/2,0] in the channel because
T = —fz. Bv svmmetry, we may focus attention on the case T > 0; this is assumed
throughout Secs. 3 and 4. The dynamical system (3.1) can be analyzed completely by a
phase-plane analysis, which we carry out in detail. Recall from Sec. 2 that we assume
€ < 1/8 throughout.

The critical points of system (3.1) satisfy the algebraic system

(Z+1+s)(%—1>+6=0,

i(i—1>—z=o.
TA\T

These equations define, respectivelr 2 hype-bola and a parabola in the ¢-Z plane; these
curves are drawn in Fig. 4, whicli ,Tesponds to the most comprehensive case of three
critical points. The critical peint - intersections of these curves. In particular, critical

points lie in the strip 0 < o < T.
Eliminating Z in these eqration. nows that the ¢-coordinates of the critical points

satisfy the cubic equation Q(# /1) = 0, where

=)

l}l

Q&) = [1515(6 -1)+1 +€} (E-1)+¢. (3.3)

-12-
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Fig. 4: The phase plane in the case of three critical points.

A straightforward calculation using Eq. (2.22) shows that

P(s,) = P ( - ") = -2Q(e/T). (3.4)

Thus each critical point of the system (3.1) defines a steady-state solution of system (JSO):
such a solution corresponds to a point on the steady total-stress curve (see Fig. 2) at which
the total stress is T(z). Depending on the value of T, and hence z, there are either one, two,
or three critical points. To simplif the ensuing discussion, we shall ignore the degenerate
cases of two critical points, where T =Ty or T = T Consequently, we have:

Proposition 3.1: For (almost) all positions z in the channel, there are three possibilities:
(1) there is a single critical point A when T(z) < Tm;
(2) there is a single critical point C when T(z) > Tum;
(3) there are three critical points A, B, and C, withoa >0 > o¢, when Ty < T(z) <
Ty
To determine the qualitative structure of the dynamical system (3.1), we first study
the nature of the critical points. The behavior of orbits near a critical point depends on

-13-




the linearization of Eq. (3.1) at this point, i.e., or the eigenvalues of the Jacobian
1 T(e
~YZ+1+e) T (7 - 1)
T(oe
Z(2g-1) -1

evaluated at the critical point. The character of the eigenvalues of J can be determined
from the signs of the trace of J, given by

J= , (3.5)

—TrIJ=2Z+1+2¢; (3.8)
the determinant of J, given by
sDetJ—Z+1+e+T—2("—d— 1) (5'- 1)- (3.7)
B e \'T T ’ '
and the discriminant of J, given by
N, 4 3 2 —
e?DisermJ =(Z +1)* - 8T~ (% - Z) + 37" (3.8)

We note a useful fact: at a critical point,
eDetJ = Q'(¢/T) ; (3.9)

this follows by using the second of Eqs. (3.2) to replace Z in Eq. (3.7). This relation is
important because Q' is positive at A and C and negative at B.
The character of the eigenvalues can be understood using these formulae together with
Fig. 4. In addition to the hyperbola on which ¢ = 0 and the parabola on which Z =0
[see Egs. (3.2)], Fig. 4 shows the hyperbola on which Discrm J vanishes [see Eq. (3.8)]. We
draw the following conclusions:
(1) TrJ < 0 at all critical points;
(2) DetJ >0 at A and C, while Det J < 0 at B; and
(3) DiscrmJ > 0 at 4 and B, whereas Discrm J can be of either sign at C. (For “most”
values of € and T, DiscrmJ < 0 at C; in particular, DisermJ < 0 if C is the only
critical point. But it is possible for Discrm J to be positive if T is sufficiently close to
Tm.) :
Standard theory of nonlinear planar dynamical systems (see, e.g., Ref. [3, Chap. 15]) now
establishes the local characters of the critical points A, B, and C in Prop. 3.1:

Proposition 3.2:

(1) A is an attracting node (called the classical attractor);

(2) B is a saddle point;:

(3) C is either an attracting spiral point or an attracting node (called the spurt attractor).
The next task is to determine the global structure of the orbits of system (3.1). In

this direction, we employ an argument based on a suggestion by A. Coppel [4].
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Proposition 3.3: System (3.1) has neither periodic orbits nor separatrix cycles.

For the proof, notice that & = ~o # 0 along the line o = T, so that no periodic orbit
can cross this line. Since all critical points lie in the half-plane ¢ < T, any periodic orbit
(which must surround some critical point, by the Poincaré-Bendixson theorem) necessarily
lies in this half plane. Let the scaled time variable s be defined by ds = (T — o) dt; then
with a prime denoting differentiation with respect to s, system (3.1) transforms to

o' =eHZ+1)=-0/(T - o) =:p(0,2),

2 = el — Z)(T = o) = g(0, Z) . (3.10)

Since

8p)dc +8¢/82Z = —(2T — o) )(T - 0)?, (3.11)

is strictly negative for o < T, existence of periodic orbits and separatrix cycles is excluded
by Bendixson’s criterion {1].

To understand the global qualitative behavior of orbits, we construct suitable invariant
sets. In this regard, a crucial tool is the identity

Sl @) =2l @4 hP -], (12

which is obtained by multiplying the first of Egs. (3.1) by o and adding the second,
multiplied by Z + 1. Thus the function V(o,Z) := 0% + (Z + 1)? serves as a Lyapunov
function for the dynamical system. Notice that identity (3.12) is independent of T and ¢.

Let T denote the circle on which the right side of Eq. (3.12) vanishes. Also let C,
denote the circle of radius r centered at ¢ = 0 and Z = —1, along which V(o, Z) = r; thus
each C, is a level set of V. The circles T and C; are shown in Fig. 5, which corresponds
to the case of a single critical point, namely the spiral point C; and in Fig. 7, which
corresponds to the case of three critical points. For later convenience, denote by D the
point where C; intersects the parabola on which Z = 0. Also notice that Eq. (3.12) implies
that the critical points of system (3.1) lie on T'.

If » > 1, T lies strictly inside C,. Consequently, Eq. (3.12) shows that the dynamical
system (3.1) flows inward at points along Cr. Thus the interior of Cr is 2 positively
invarant set for each r > 1. Firthermore, the closed disk bounded by C;, which is the
intersection of these sets, is also positively invariant. This establishes:

Proposition 3.4: Each closed disk bounded by the circle C, with r > 1 is a positively

invariant set for the system (3.1).
: The above results will be used to determine the global structure of the orbits of

system (3.1) and to analyze the stable and unstable manifolds of the saddle point at B.
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Fig. 5: The phase plane when the spurt attractor C is the only
critical point.

A. Let us first consider the structure of the flow when there is a single critical point,
located at C; see Fig. 5. As shown in Prop. 3.2, the point C must be an attracting spiral
point. Because there are no periodic orbits (Prop. 3.3), Prop. 3.4 implies that the orbit
through each point in the phase plane tends toward C as ¢ approaches infinity.

In the application to the shear flow problem, we are interested in the particular solution
of Eq. (3.1) with initial data ¢ = 0 and Z = 0 (point O). The orbit of this solution initially
remains inside the region R bounded by ODV CO in Fig. 5, eventually exits through the
arc CV of the parabola, and finally spirals toward C. Indeed, the flow is directed into
R along OD (where V < 0), DV (where Z = 0 and ¢ < 0), and CO (where V = 0 and
o > 0). Therefore the orbit through O must leave R along the arc V'C of the parabola,
whereupon it spirals into C. This solution is illustrated in Fig. 6; note that this solution
does not tend to a periodic orbit, according to Prop. 3.3.
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Fig. 6: The orbit through origin when the spurt attractor C is the
only critical point.

B. Next, consider the case when there are three critical points, illustrated in Fig. 7. By
Prop. 3.3, there are no periodic orbits or closed separatrix cycles. Propositions 3.2 and 3.4
imply that the orbit through any point in the plane either: tends to A; tends to C; or
tends to B along its stable manifold as t approaches infinity.

For a more detailed analysis, we first prove that the closed set T bounded by the
curved triangle ODA in Fig. 7 is positively invariant with respect to Egs. (3.1). Thus is
because the flow is directed into T along OD (where V < 0), DA (where Z = 0 and ¢ < 0),
and 4O (where V = 0 and ¢ > 0). One consequence of the invariance of 7 is that the
orbit of the solution of Eq. (3.1) with initial datac =0 and Z =0 flows into the classical
attractor A as t approaches infinity.

The next task is to study the stable manifold for the saddle point B in Fig. 7. Through
this point we have drawn the circle Cg centered at ¢ = 0 and Z = -1, which intersects the
parabola at E. Let S denote the closed set bounded by the curved triangle ECB in Fig. 7.
At points on its boundary, the flow is directed as follows for increasing t: outward from §
along EB because V > 0; outward along CB, where V =0 and & > 0; and inward along
CE because Z = 0 and ¢ > 0. As a result, one branch of the stable manifold at B must
enter S through the arc EC and remain in S. Furthermore, this branch must have crossed
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Fig. 7: Invariant regions in the case of three critical points.

the arc CB' of T (where B' is the reflection of B about the Z-axis), along which V =0
and o - ¢ < 0, because it could not have crossed the arc B'E of Cg. The other branch of
the stable manifold enters B through the sector exterior to I and the circle Cg. Having
come from outside of the circle I', where V' < 0, Prop. 3.4 implies that both branches of
the stable manifold must have come from infinity in the phase plane.

For the purpose of analyzing the spurt phenomenon in Sec. 5, we summarize these
results as follows.

Proposition 3.5: The basin of attraction of A, i.e., the set of points that flow toward
A as t — oo, comprises those points on the same side of the stable manifold of B as is
A; points on the other side are in the basin of attraction of C. Moreover, the arc of the
circle T through the origin. between B and its reflection B' is contained in the basin of
attraction of A.

To demonstrate the last statement, observe that the flow is directed into the region bounded
by the the following curves in Fig. 7: C, between O and D; the parabola between D and
A; T between 4 and B; Cg between B and B'; and [ between B’ and O. Therefore this
region is positively invariant. In particular, the stable manifold for B cannot cross its

boundary, so that it cannot cross I' between B and B’.
Finally, consider the unstable manifold of the saddle point B. Let U; be the set
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bounded by the arcs of the parabola Z =0 and the hyperbola ¢ = 0 in Fig. 7, between
the critical points B and A. Along the open arc of the parabola BA, ¢ > 0, while along
the open arc of the hyperbola, Z > 0. Therefore, one branch of the unstable manifold at
B lies in U, and connects B to 4. Now consider the set U, bounded by BV, as shown
in Fig. 7. The flow is directed into U> along BV and CB, so the second branch of the
unstable manifold at B remains in U, until it exits through the arc VC. If C is a spiral
point, this branch enters and leaves I{; infinitely often as it spirals into C, while if C is an
attracting node, it does not reenter U, as it tends to C.

To summarize the above description of the dynamics of the system (3.1) with three
critical points, the reader is referred to Fig. 8, which shows the case when C is a spiral

point.

3

K
O
~1
Q

Fig. 8: Phase portrait in the case of three critical points, with C
being a spiral.

C. Last is the case of a single critical point at A, which according to Prop. 3.2 is an
attracting node. Again. because there are no periodic orbits, Prop. 3.4 implies that all
orbits are attracted to 4. In particular, the orbit through the origin remains in a region

that is analogous to the region I in Fig. 7.
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4. Phase Plane Analysis for a Model with Two Relaxation Times

The purpose of this section is to study the qualitative features of solutions of the
system (JSO:) when a = 0. We focus on a special choice for the parameters defining
the model: 0 < a; < 1 and a3 = 1 (so that § = 0). The physical significance of this
choice is discussed in Sec. §. If we identify « with ¢, then the steady states for this model
coincide with those of system (JSO) [see Egs. (2.32)-(2.34)]; again, we assume ¢ < 1/8.
Thus the second relaxation time in system (JSO;) replaces the Newtonian viscosity in
system (JSO), and techniques introduced in Sec. 3 can be applied. The question we
address is: to what extent do the dynamics of the present model resemble the dynamics

of system (3.1)? _
When a =0 and f = f, the momentum equation in system (J/SO2) can be integrated

to show that the total shear stress T' := ¢y + 03 equals T(z) = — fz; equivalently, ¢, +7, =
0. As a result, adding the stress equations in system (JSO,) yields
(Zi+1+2Z,+ B, =01+ 8T -0y) . - (4.1)

Using this equation to eliminate 7. leads to an autonomous system of three ordinary
differential equations:

. T—(I—Eﬁ—l)al _
a‘—(zl+l)e,@-l[21+1+zz+ﬂ] 7

= a1
Zy = T-(1 =<8 )os Z1, (4.2)

Tz 41+ .+ 8]
T -(1-¢ef Yo,
B=YZy + 1+ 2, + B)
The assumption § = 0, coupled with the requirement that Z, be finite as ¢t — —oc,
shows that Z; = 0; thus the last of Egs. (4.2) can be eliminated. Since no confusion will
arise by omitting subscripts, we write the dynamical system as

- 5*1,322 .

Z, =-§(T - 71)

. T-(1~-ef Yo
U—(Z+1)€6—1[Z+l+ﬁ]—a’ (43)
5 _ T—-(1-efYe _ .

7B Z + L+ 8]
Notice that the identity

d

Z{of+(Z+1)) =2 [*+(Z+1)*-1] (4.4)
holds for system (4.3) just as it does for system (3.1).

The relationship to system (3.1) is highlighted by scaling the time parameter: define
the scaled time s to satisfy dt = 3~![Z + 1 + 8] ds, and let a prime denote the derivative

d/ds. Then _
a'=(Z+1)(T;U> ~a,

Z'= o (T“’) -Z-f P+ (Z+5)7-1)

(4.5)
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and

{0 +(Z+1)? ) =28 Z+1+8][02+(Z+ 1) 1] . (4.6)

Another useful way of writing system (4.3) is obtained by multiplying Egs. (4.3) by
B~Z + 1+ 8] and using Eq. (4.4):

€

BHZ +1+p8l6=(Z+1) (T_a) —_
(4.7)

—

—,3_10&+Z"=—0(T;U>—Z.

It follows from this formulation that the critical points satisfy the same algebraic system
as does system (3.1), namely

(Z+1+6)(——1>+€=0,

’:r—?— (— -~ 1) Z=0.
e T\T
Just as in Prop. 3.1, there are up to three critical points, labelled 4, B, and C, for each

position z in the channel.
The character of the critical points is determined by the Jacobian J of the right side of

the system (4.3), evaluated at the critical point. Equivalently, this matrix can be calculated
using Egs. (4.5) or Egs. (4.7), which imply that

(4.8)

BHZ+1+ P83

=( -3Z+1+¢) —?(%—1) ) “9)

(22 -1) 2670 —1-471(2Z +1)

=< 1 0 ) (—E(Z+l+s) —?(%—1)) .

B~ B~YZ +1+5 %(2%_1) ~1

!

The character of the eigenvalues of J can be determined from the signs of the trace
of J, which, according to Eq. (4.9), is given by

—BTNZ+ 148 Te I =2 +1+2 +6871(2Z +1) ; (4.11)

the determinant of J, given by

€87 Z + 1+ B]DetJ = Z+1+€+Z—<2%-1) (%-1) , (4.12)
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as follows from Eq. (4.10); and the discriminant of J, given by

€?3~%[Z + 1+ B]* Discrm J

=[Z+1-¢871(22 + 1)]2 —4T" (% - 1) (2[1 -55-1]% 3 1) . (4.13)

Because Z > —1 at a critical point, Tt J < =2 + £~} thus TrJ < 0 at all critical
points provided that we assume that § > 2. Furthermore, Eq. (4.12) shows that DetJ
has the same sign at the critical points as for system (3.1), i.e., positive at A and C and
negative at B. To determine the signs of Discrm J at the critical points, first notice that
it 1s positive at B because the determinant is negative. Furthermore, Eq. (4.13) defines
a hx perbola similar to that defined by Eq. (3.8) and drawn in Fig. 4; it crosses the line

= —(1 —efY)/(1-2p") ato = (1 —¢f~)7'T and ¢ = 7. Assuming that
5‘5 -1« -2-, it follows that the discriminant is positive also at 4 because og < 04 < T and
Zp < Z4 < 0. Similarly, the sign of the discriminant at C is negative unless T is near T m,
just for system (3.1).

As in Prop. 3.2, these results determine the local character of orbits of the quadratic
system (4.3) [and the equivalent system (4.5)] near critical points: A is an attracting node;
B is a saddle point; and C is either an attracting spiral point or an attracting node. We
remark that a spurt attractor C that is a node for system (3.1) might be a spiral point for
system (4.3). Furthermore, Eq. (4.4) and the discussion leading to Prop. 3.4 shows that
the disk bounded by the circle C; of radius 1 centered at ¢ = 0 and Z = —1 is positively
invariant for system (4.3) (cf. Fig. 7). We assume that 8 > 1 so that theline Z+1+3 =10
does not cross C}.

To rule out the existence of periodic orbits and separatrix cycles for system (4.5), the
analogue of Prop. 3.3. consider the set of points Q inside C; such that ¢ < T(1 —¢8~1)"1.
Because this set contains all critical points, and because it is positively invariant [because
& = —o # 0 along the line 0 = T(1 —¢f~!)~!], any periodic orbit or separatrix cycle must
stay within Q. Now introduce the scaled time variable u, defined by du = (T — &) ds, into
Eq. (4.3) to obtain the equations do/du = p(0. Z) and dZ/du = q(0,Z). A straightforward
calculation shows that

dp/do + 8q/0Z = -(2T — 0)/(T =) - B~1(2Z +1)/(T - o) . (4.14)

This quantity is strictly negative because ¢ < 2T and Z > —2 along an orbit in region
(assuming that ¢3~! < 1). Consequently, Bendixson's criterion excludes periodic orbits
and separatrix cycles for the system (4.5) and hence system (4.3).

The remaining analysis of the phase plane for the system (4.3) is almost identical to
that for the system (3.1). The analysis of Sec. 3 relied on calculating the direction of flow
across five curves: the circles Cy and Cs, along which V' is constant and the sign of 14
was determined; the circle ' where V =0 and & had a definite sign: the " yperbola where
& = 0 and the sign of Z was known; and the parabola where Z = 0. For system (4.3), V
is governed by the same equation as in system (3.1). Furthermore, Eqs. (4.7) shows that
o = 0 along the same hyperbola. and that the sign of Z on this hyperbola is the same as
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before. Therefore the onlv difference concerns the parabola where & = e“la(T -0) —~
vanishes and Z = B~ lco. However, —d = [(‘7 +e8 o — —] o when & = 0, so that
for ¢ > 1T (i.e., to the right of the vertex V), & has the same sign as when 87! = 0.
Therefore the pa.rabola works as a boundary just as in Sec. 3.

Summary: All qualitative features of the dynamics of system (3.1) (except possibly
whether C is a node or a focus) carry over to system (4.3).

5. Qualitative Features of (JSO) Based on Phase Plane Analysis

The principal motivation of the analysis that follows is to explain recent numerical
simulations of (JSO) described in Refs. [9, 11]. These exhibited several effects related
to spurt: latency, shape memory, and hysteresis. Fig. 9 shows the result of simulating a
“quasi-static” loading sequence in which the pressure gradient f is increased in small steps,
allowing sufficient time between steps to achieve steady flow [9]. The loading sequence is
followed by a similar quasi-static unloading sequence, in which the driving pressure gradient
is decreased in steps. The initial step used zero initial data, and succeeding steps used the
results of the previous step as initial data. The resulting hysteresis loop includes the shape
memory predicted by Hunter and Slemrod {7] for a simpler model by a different approach.
The width of the hysteresis loop at the bottom can be related directly to the molecular
weight of the sample [9].

In this section, we explain spurt, shape memory, and hysteresis using the results of
the phase plane analysis of the dynamical system (3.1) corresponding to a single relaxation
time; the discussion can also be based on the system (4.3) for two relaxation times. Latency,
which occurs for (JSO) when ¢ is sufficiently small, will be explained in Sec. 6 by means of
an asymptotic analysis. The latter will also be used in Sec. 6 to show that systems (JSO)
and (JSO,) exhibit similar features when ¢ is sufficiently small.

We consider experiments of the following type: the flow is initially in a steady state
corresponding to a forcing f,, and the forcing is suddenly changed to f = f, + Af. We
call this process “loading” (resp. “unloading”) if Af has the same (resp. opposite) sign as
fo. The initial Sow can be described by specifying, for each channel position z, whether
the flow is at a classical attractor A (z is a “classical point”) or a spurt attractor C (z is
a “spurt point”) for the system (3.1) with T = —fyz. We shall say that any point lying
on the same side of the stable manifold of B as is A lies on the “classical side”; points
lying on the other side are said to be on the “spurt side.” The outcome of the experiment
depends on the character of the phase portrait with T = —fz. To determine this outcome,
we need only decide when a classical point becomes a spurt point or vice versa.

To understand how critical points move, consider Fig. 10. First notice that the critical
points for Eq. (3.1), for any value of T, lie on the circle T, which is independent of 7.
Let M = (oym,2 w) denote the degenerate (double root) critical point that occurs when
T =Ty, ie., at “top Jurnpmg in Fig. 2: and let m = (0m,Zm) denote the degenerate
critical point for T = T m, i.e., for “bottom jumping.” These points, together with their
reflections M’ = (=o', Z ) and m' = (=0 m, Zm), serve to divide I into arcs: I'4, the
upper arc of [' between M and M'; T, the lower arc between m and m'; and [, the
remaining two arcs where Z € [Z,, Zy]. For any value of T, positive or negative, the
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Fig. 9: Hysteresis under cyclic load: normalized throughput 6Q
vs. wall shear stress Twan [9].

classical attractor A lies in I' 4, the spurt attractor C lies in I'¢, and the saddle point B
lies in T 5. Furthermore, as [T is increased, the critical points A4 and C' move downward
along I'. while B moves upward. This follows from Eq. (3.3) by differentiating the relation
Q(o/T) = 0, which determines how o /T varies with T, and by using the first of Egs. (3.2).

The principle mathematical properties of the dynamical system (3.1) that determine
the outcome of loading and unload.:'g experiments are embodied in

Proposition 5.1: _
(1) A classical point Ay for the initial forcing f, lLies in the domain of attraction of the

classical attractor A for f, provided that A exists (i.e., |[fz| < Tum);

(2} A spurt point Cy for the initial forcing f, lies in the domain of attraction of the spurt
attractor C for f unless (a) C does not exist (ie., |fz| < Tm); or (b) C lies on the
classical side of the stable manifold of the saddle point B for f.

This follows because, as shown in Secs. 3 and 4 (see Prop. 3.5), the stable manifold of
B. which separates the domain of attraction of A from that of C, never crosses the arc
[ 1. We remark that (2b) occurs only when |AF]| is large enough. In particular, it never
occurs during a quasi-static processes, in which the flow is allowed to attain equilibrium
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Fig. 10: Location of critical points.

after each of many small increments in forcing.

A. Startup _
As a first experiment, consider starting with f, = 0 and loading to f > 0. Thus

the initial state for each z lies at the origin ¢ = 0, Z = 0. Then according to 5.1(1)
above. each z € [—1/2.0] such that flz| < T is a classical point, while the z for which
fizi > Ty are spurt points (because there is no classical attractor). Consequently, we
draw two conclusions:

Proposition 5.2:

(a) If the forcing is subcritical (i.e., f < fere := 2T s), the asymptotic steady flow is
entirelv classical.

(b) If che forcing is supercritical (f > f..;.), there is a single kink in the velocity profile
(see Fig. 3), located at £. = =T 51/ f; those z € [—=1/2,z.), near the wall, are spurt
points, whereas z € (z.,0], near the centerline, are classical.

he solution in case (b) can be described as “top jumping” because the stress T. = T y
at the kink is as large as possible, and the the kink is located as close as possible to the

wall.
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B. Loading
Nex:. consider increasing the load from fo >0to f > fo A point z that is classical

for f, remains classical for f unless there 1s no classical attractor for T = f:, Le.,
flzi> T\[ A spurt point ¢ for f,. on the other hand, is always a spurt point for f. ThlS
is true because: (a) the spurt attractor always exists at the larger total stress T = —fz:

and (b} the stable manifold of B does not cross the arc of I' between C and B, and Cy lies
on this arc. so that Cy lies on the spurt side of the stable manifold of B.

As a result. a point in z in the channel can change only from a classical attractor to
a spurt asztracsor. and then only if flz| exceeds Ty;. When f is chosen to be supercritical.
loading causes the position z. of the kink in Fig. 3 to move away from the wall, but only
to the extent that it mu_s_c: a single jump In strain rate occurs at z, = —TM/}’_, where
he total stress is 1. = I yr. These conclusions are valid, in particular, for a quasi-static
radually increasing the load from .]?0 =0to f > ?Cm.

C. Unloading

Now consider unloading from f, > 0 to f < f,; assume, for the moment, that f is
positive. Here, the initial steady solution need not correspond to top jumping. For this
tvpe of unloading, a point z that is classical for f, always remains classical for f: the
classical ater ac:or for f exists because f|z| < fo|z]. By contrast, a spurt point = for f,
can ‘onme slass :cal at f. This occurs if: (a) the total stress T = —fz falls below T'p; or
(b she spurt attractor Cp for T = —f,z lies on the classical side of the stable manifold
of the dd‘e point B for T = —fz [see Prop. 5.1(2b)]. The latter possibility can cause
he formation of a second kink in the steady velocity profile, which arises from a second
jump in the plor of steady shear stress vs. strain rate shown in Fig. 11. A new region of
ciassical Sow develops next to the wall. and the internal region of spurt flow lies between
the two classical rerions. Of course. this occurs only if |Af] = If — f,l is sufficiently large,

Le.. thg unloading is abrupt. However. it is impossible to have classical flow regions to
stars spurting, even under sudden finite loading, unless the classical attractor disappears.
In a quasi-static experiment. in which the forcing is decreased gradually, spurt points can

become classical only if flz| < Tm

o

D. Quasi-Static Loading and Unloading: Shape Memory and Hysteresis

We now discuss the quasi-static loading-unloading cycle, illustrated in Fig. 9, based
on results of Subsections B. and C. Specifically, recall that there are two ways in which a
spurt point z can become classical during unloading: (i) if T. decreases to Tm, or (ii) if
case (b1 in Subsection C occurs. For a fixed ¢, the latter can be avoided in quasi-static
unioading by keeping the increments |A| sufficiently small.

Consider a quasi-static loading-unloading cycle that starts with zero forcing, loads to
a fm“ > fr.n and then unloads to fana < ferie; Of course, Fana may be zero. At first,
while f < f.,,. the flow is classical (from the origin to a in Fig. 9). When F becomes
supercritical (from a to b in Fig. 9), a kink forms at the wall; the total stress at the kink is
T. =T . and the position r, moves out from the wall according to the rule z. f_-?lw/f-
The thickest spurt layer occurs at fmax (b in Fig. 9), for which z. = Zmax = =T a1/ f max-
Upon unloading (from b to ¢ to d in Fig. 9), the layer position z. remains fixed at zpax,
and the stress is Ta = (f/fmac ) 1+ SO long as T. remains above T n,; this occurs between
b and ¢ in Fig. 9 and corresponds to shape memory, in the sense that the layer position
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Fig. 11: Generation of flow with two kinks, giving rise to an inter-
nal spurt layer. The sequence of relevant strain rates, 7, labeled
1 - 35, is shown as the stress, w, varies linearly across the channel.

remains fixed, and points on the interval (—1/2, z.) remain spurt points, while points on
the interval (r., 0] remain classical. Notice that this behavior gives rise to hysteresis, in the
sense that no part of the loading curve in Fig. 9 is retraced until the entire flow becomes
subcritical. If fg,, is small enough, then eventu_ally_i’-. falls below T,,, whereupon _the
layer position z. moves toward the wall: z. = =T, /f, and the stress at the kink is T p:
this occurs between ¢ and d in Fig. 9 and corresponds to loss of shape memory. If z,
reaches the wall (at d in Fig. 9), then the flow becomes entirely classical.

Summary: A kink moves away from the wall under loading if it is a top jumper; it moves
toward the wall under unloading if it is a bottom jumper; and otherwise it remains fixed.
The hysteresis loop opens from the point at which unloading commences; no part of the
unloading path retraces the loading path until point d of Fig. 9 is reached.
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E. Reloading and Flow Reversal

[t is possible, of course, to apply more complex loading and unloading sequences than
those described in Subsection D. For example, a loading sequence can be followed by
unloading, which. in turn, is followed by reloading. Arguments extending the ones given
above can be used to make qualitative predictions in such cases. In particular, Prop. 5.1
implies that the layer position can remain fixed upon reloading (i.e., shape memory is
retained).

Next we consider flow reversals. which occur when fo and f have opposite signs.
In flow reversal with loading, i.e., |f| > |fol, a mild generalization of the argument of
Subsection B. that the kink position z, moves away from the wall, and all conclusions
hold with appropriate change in sign. To see this, it is helpful to examine Fig. 10 with
appropriate parabolas and circles T' and Cpg constructed also in the left half-plane; this
wiil also be useful in what follows. A striking phenomenon has been observed in numerical
experiments using data in Ref. [17], in the case flow reversal in which a spurted solution
is unloaded, i.e., f, and f have opposite signs and |f| < |f,|. Surprisingly, numerical
experiments indicate that in such a process the layer position can remain unchanged, and
shape memory can be retained. For this to happen, the magnitude of the stress at the layer
boundary must not fall below T,,. Given this fact, there is a variety of phase portraits
constructed with the aid of Fig. 10 that can lead to retention of shape memory in flow
reversal with unloading. Perhaps the simplest way this can occur is to load continuously
to a supercritical load level To > 0 to obtain a top-jumping solution of the system (3.1)
in which all spurt points ¢ € [—1/2,z.) have only a single critical point Cy. Reversing
this flow with unloading, leads to solutions in which all points z € {z,, 0] remain classical;
observe that circles Cg in Fig. 10 are symmetric about the Z-axis, and by symmetry,
Prop. 5.1(1) implies the result. It is clear that points z € [<1/2,z.) for which T > Ty
will remain spurt points. The only remaining issue concerns points z € [—1/2,z.) for
which T, < T < Ty For these to remain spurt points, the stable manifold of B must
extend far enough into the right half-plane to enclose the spurt attractors Cy. General
criteria for this situation to occur are not so easy to establish; however, it will be seen in
Sec. 6 that for ¢ as small as in Ref. [17], this situation is likely to occur. By contrast, there
are many ways to lose shape memory particularly if ¢ is not small.
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6. Asymptotic Analysis of (JSO) and (JSO;) for a =0 and Small ¢

The analysis of system (JSO) leads to analytical description that accurately reflects
the experimental results of Vinogradov et al. [17]. It raises a question of the physical in-
terpretation of the Newtonian viscosity. This was chosen to give the total stress vs. strain
rate curve local extrema and evidently led to an empirical model with mathematical fea-
tures that reproduce observed behavior. To make the predictions of this model credible,
the empirical parameter € must be associated with a measurable physical quantity. Since
there is no solvent associated with the undiluted systems studied by Vinogradov et al.,
the most likely interpretation of the Newtonian contribution is that is somehow represents
the effects of shorter relaxation times. At first sight this seems puzzling in that the full
system (2.9) is not classifiable according to type when n # 0 but is hyperbolic (away from
the elliptic region) when 7 = 0; a small amount of Newtonian viscositv seems to make a
large difference in the mathematical character of system (2.9). In Sec. 4, we saw that in the
region of parameter space characteristic of the data of Vinogradov et al., system (JS0O) and
system (JSO2) exhibit the same steady behavior and very similar dynamic behavior. This
suggests that it may be valid to approximate system (JSO2) by the simpler system (JSO).
In this section, we show that the dynamic behavior of subcritical solutions and of critical
solutions during the latency phase in the two models agrees to O(e2). Since the existence,
location. and nature of the critical points of system (JSO) and system (JSQ-) is identical
(for 3 > 1) and the phase portraits are qualitatively the same, the only possible difference
between the two models can be seen to lie in the precise timing of the “Newtonian phase”
[11] and the details of the spurt transition following latency.

The following calculations involve system (JSO-) but are valid for system (JSO) in
the limit as § — oc. A major point is that many of the results are independent of 3. We
consider the case when ¢ <« 1; this is true for the data of Vinogradov et al.that exhibit
spurt, where ¢ is in the range O(1072) to O(1073). Equation (4.4) shows that solutions
of system (JSO,), with initial data at the origin, on time scales of order ¢, very nearly
follow the arcs of circles defined by the right side of the equation. Equation (4.5) shows
that such solutions will change on an O(¢) time scale until ¢ = T — O(¢). The time during
which this occurs is referred to as the “Newtonian phase.” In principle, it is possible to
obtain higher order estimates, but for our purposes, it will be sufficient to omit terms of
order ¢ and higher and approximate the value of Z at the end of the Newtonian phase by
that value on the circle corresponding to ¢ = T. This value is

Zy=V1-T" -1 (6.1)

There are two important points to be made here. First, for T > 1 spurt starts immediately
and there is no Newtonian or latent phase. Second, the behavior of systems (JSO) and
(JSO,) differs only by a factor of 371(Z + 1+ 8) in the time scale and, to O(¢), they have
the same orbits during the Newtonian phase. We now consider system (JSOz) during the
latent phase, which begins when Eq. (6.1) holds approximately.

We malke a formal asymptotic expansion of the solution (o, Z) of the system (4.6) in

powers of ¢,
c=0q+6c0,+ea0+...
0 1 2 (6.2)

Z=Zo+521+5222+... -
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Multiplication of Egs. (4.7) by ¢ and substitution of Egs. (6.2) readily yields the following
result upon comparing terms through first order in ¢:

Uo=—f

; T

YT T Zp+1 (6.3)
=2

: T

Zy = - - 245

° T Tz +1 Zos

Z N provides an initial value for Zj in the solution of the third equation for Z,. Thus &
stays nearly constant while Z varies at zero order. This is a key point: The long relaxation
mode response of the system is a rapid development of o. At early time, during latency, o
balances the pressure gradient by assuming the linear profile of T. During this time, the
normal stresses, which are self-equilibrating in that they play no direct role in balancing the
pressure gradient, grow on a very different time scale. The solution of the third equation of
(6.3), which we call the “latency equation” is independent of all parameters of the model
except T. For 1/2 < T < 1, latency ends when Z; is sufficiently close to —1; for this value
of Zy, o1 becomes singular, and spurt ensues. For T < 1/2, as we have seen from the phase
plane analysis, orbits starting at the origin do not move to the spurt attractor. The latency
time can be easily found by solving for the inverse function in the third equation of (6.3),
which can be done analytically; the duration of the Newtonian phase can be neglected,

and the integration can be performed from Zy = Zn to Zy = —1, as follows
~1 Z 2
Yatency = —__.ti"—_—' dZ = 71)'1n T —2
v Z*+Z+T ZL+2ZN+T
(6.4)
1 -1 -1 1 1 2Zn+1

+ —————==tan —_—— ————;——tan ———
V4T~ -1 VaT -1 V4T -1 VaT -1

The resulting latency time is non-dimensional and thus scales with A~! for a fixed T. The
non-dimensional latency time decreases with increasing T, because the initial value given
by Eq. (6.3) gets closer to one and the integrand of Eq. (6.4) decreases. For T < 1/2,
one finds that the integral with the given limits does not exist, so that in this sense, the
latency time of a classical solution is infinite. Note that these results for system (JSO;)
are independent of 3, and thus apply equally to system (JSO).

Numerical initial values for the coefficients of Egs. (6.2) at the first two orders can
be determined from matched asymptotic expansions in the spirit of Ref. [10]. It turns
out that all expansion terms through order one, except Z;, of an inner expansion with
time stretched by ¢, := t/¢ have finite asymptotic values as t. — oo. A value of Z, can
be obtained by taking the value obtained when the coefficients of zero order are within
O(<?) of their asymptotic values, and the coefficients of first order are within O(g) of their
asymptotic values. This procedure yields initial data for the outer expansion, Eq. (6.2)
from the inner expansion; it is not sensitive to the precise values of the “O-constants”

involved.
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Continuing the outer expansion at second order, we find that ¢, and Z; satisfy

BHZ +1)61 461 =~(Zo + 1oz ~ (2, + 1oy

~ 87006y + 24 = g0 + 02 -2, (8:5)

Since o, is known, the first equation reduces to an algebraic equation for ¢, in terms of
known quantities and Zy; substitution into the second equation gives an ordinary differ-
ential equation, with known coefficients, for Z,. There is an interesting feature of such a
celution. Multiplving the first equation by oo and the second by Zg + 1 and adding yields

(Zo+1)Z) + 006y = (Zo + 1)02 = (Zo + 1) 21 + 00(Z, + 1)oy (6.6)

So Z, is determined by an ODE whose coeflicients are independent of 3, and if initial data
is given for Z, that is independent of 3, then

g2 = fl(ﬂ7T’ ZO, Zl)

2y = £2(T, 20, 21) (67
Thus systems (JSO2) and (JSO) agree to two orders in ¢ in their behavior during the
latent phase, when their initial data agree to that level of accuracy. However, the value
of Z, obtained from the matching procedure described above, and the precise value t, at
which the matching criteria are met are functions of 4. This leads to the conclusion that
the two systems (JSO,) and (JSO) agree to order O(¢) in the Newionian phase; during
the latency phase, the difference between the models accumulates further only at order
O(&?). Moreover, changing the values of the O-constants in matching does not alter this

conclusion.
By a perturbation analysis of the roots of system (2.22) for small ¢, one finds that at

the spurt attractor
€

= = 2
a'--.T[1+_T_2 + O(e )]
Z =~ [1+0()]

An important consequence of (6.8) relates to retention of shape memory in flow rever-
sal. Note that the distance from Cy to C is of order ¢, and recall from Sec. 5E that shape
memory is lost only if the stable manifold of B separates Cq and C.

Continuing the asymptotic analysis of spurt dynamics, inspection of Egs. (3.1) or (4.3)
indicates that in the early stages of spurt, when Z is not near —1 and ¢ has deviated from
T after latency, the derivatives of the system are O(¢~!). A stretched-time series like
that for the Newtonian phase would be appropriate; analysis of the Newtonian phase then
sugzests that the two systems could differ in their spurt dynamics at least at first order,
but of course, they would end up in the same steady states. The conclusion is that systems
(JS0,) and (JSO) have the same critical points and qualitatively similar orbits. In the
asymptotic range studied here, they have virtually identical latency times.

The remaining task is to study possible differences between (JSO) and (JSO3) that
may occur during the spurt phase, and predict dynamic behavior that may be observable

(6.8)
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in experiments. The analysis that follows will determine the detailed structure of orbits
spiraling into the spurt attractor C, for example in Fig. 7, in as large a neighborhood of C
as permitted. One objective is to determine the frequency at which orbits spiral toward C.
We use the scaled system (4.5) that approximates JSO,. Define X := (¢, Z)T and write
X = Xo + X, where X = (09, Zy)7 is a critical point. Then the rescaled system (4.5) is
of the form X’ = F(X); by Taylor’s theorem, the latter can be written as

- -~ 1. -
X' =3X+ -Q-XTDZF(XO)X , (6.9)

where D denotes differentiation with respect to X, F(Xo) =0, DF(X,) = J of Eq. (4.9),
and D*F is the Hessian. The Taylor series stops at second order because the system is
quadratic. We convert system (6.9) to polar coordinates in the phase plane, with origin at

Xo, by defining r and & implicitly:

oc=0p+rcosé

Z =2Zy+rsind, (6:10)
and we obtain
~ =~} Z'Z/
(lr) = 222 (6.11)
~'Z~ _ ~Z'r
¢ = -‘1——;2—"-— . (6.12)

We shall evaluate these derivatives centered at the spurt attractor, C, when it is a spiral
point. The ratio of these two derivatives, dlnr/df, when the numerator is negative, is
the rate of motion toward the attractor compared with the angular frequency of spiraling

around the attractor.
Applying Egs. (6.9) and 6.10 leads directly to

-, - —e~152Z
X = J4Y + (6__15_2 —,8—17'2) . (613)

Note that it is much easier to determine the quadratic terms from direct inspection of
system (4.5), rather than formal evaluation of the second derivative in Eq. (6.9). It is
a simple matter to use Eq. (6.13) to derive a general expression for dlnr/df, but the
expression is rather cornplicated; it is greatly simplified when evaluated at C, using the
asymptotic formulas Eqs. (6.8) to evaluate oy, Zy. Rescaling back to real time, the result

is ) . s
dlnr € (—1 + :&217‘ -6 [Z _ %2]) +0(e?) . (6.14)

@ T-s-c(F(1-%)+p" ["‘l])

There are several restrictions on the use of Eq. (6.14) contained in the inequalities that
follow. These are asymptotically valid to order O(¢); that is they may require the addition
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of a term of magnitude at most order O(¢) to make them true. The first restriction is
that the change in the time scale (see Eq. (4.5)) be valid (i.e., that the denominators in
Eq. (4.3) do not vanish). This is assured by requiring

B2 > ~1. (6.15)

Also r and T must be restricted so that the solution spirals into the spurt attractor, C,
e. g., by requiring the numerator on the right side of Eq. (6.13) to be negative, while
the denominator is positive. This yields the following asymptotic inequalities that are
sufficient to produce spiraling:

0<r<ro<min{f-1,T}

1 (6.16)

<
> .
- 2- 2ﬂ—1(7‘0 + 1)

N

These inequalities may be applied by restricting ry on the basis of §—1 alone and applying
the second inequality in Eq. (6.16) to determine T, if necessary, ro can then be further
restricted to satisfy the first of inequalities (6.16). Note that T can never be smaller than
1/2. so that C is always a spiral point. Spiral orbits are observed for T smaller than 1/2,
but restrictions on r that are more optimal than made in (6.16) would be required in such
cases. We emphasize that the restrictions imposed on r are much less severe than would
be implied by retaining only linear terms in Eq. (6.9).

The key observation for determining the frequency of spiraling toward C is that both
linear and nonlinear terms of order £~! cancel in the radial equation, Eq. (6.11), and thus
in the numerator of Eq. (6.14); this can be seen from Egs. (4.9) and (6.13) (note there
are both linear and nonlinear contributions to the angular frequency of order ¢~!). Thus
the orbits are elliptical spirals with decay rates of order O(¢) in the radial component; as
€ — 0, the orbits tend to circles. These conclusions hold as far from C as permitted by the
inequalities of Eq. (6.16). We can also see that for § > 1, the effect of 3 is to modify the
decay rate of the radial component to relative order O(1), but the effect is only at relative
order O(z) in angular frequency. For small values of ¢, the decay rate is sufficiently small
that the behavior could be mistaken for undamped oscillation of the stresses.




7. Physical Implications

The results of Sec. 5 provide an explanation of the spurt phenomenon in the context
of a model that is analyzed in sufficient detail to identify a number of new features that
should experimentally observable. We will summarize these predictions below. First, it is
important to note that there is a conclusion of our analysis that on the accuracy of these
predictions: When momentum transfer is not important in the dynamic process (that is,
when it is a valid approximation to set « to zero in (JSO) and (JS0,), a small amount of
Newtonian viscosity in system (JSO) accurately mimicks the behavior of system (J507)
with § = 0 and small ¢. This is true in spite of the fact that (JSO,) is hyperbolic while
(JSO) cannot be classified according to type. We expect that this observation extends to
other models and provides some quantitative reinforcement to the belief among rheologists
that Newtonian viscosity can be a useful modeling tool in undiluted systems.

One of the widely accepted explanations of spurt and similar observations is that the
presence of the wall affects the dynamics of the polymer system near the wall. Conceivably,
there could be a variety of “wall effects,” the most obvious is the loss of chemical bond
between wall and fluid, or wall slip [5]. Perhaps the most distinguishing feature of our
alternative approach is: it predicts that spurt stems from a material property of the
polymer and is not related to any external interaction. The spurt layer forms at the wall
In situations such as top jumping because the stresses are higher there; for the same reason,
of course, is chemical bonds would break at the wall;however, our approach predicts that
the laver of spurt points spreads into the interior of the channel on continued loading.
Layer chickness s predicted to grow continuously in loading to a thickness that should be
observable, provided secondary (two-dimensional) instabilities do not develop.

Our analysis suggests other ways in which experiments might be devised to verify
the dependence of spurt on material properties: (i) produce multiple kinks with spurt
layer separated from the wall, (ii) produce hysteresis in flow reversal (Fig. 9). Our model
predicts circumstances under which a different path can be followed in sudden reversal of
the flow than would be followed by a sequence of solutions in which the pressure gradient
is reduced to zero and reloaded again (with the opposite sign) to a value of somewhat
smaller magnitude. Such behavior does not seem likely to be explainable by a wall effect.

An observation that has been associated with spurt and related phenomena is the
variation in kinematic quantities that appears to be periodic; such variations are inferred
from the appearance of extrudates at the exit of a die or capillary in which spurt (or slip, or
other wall effect) is presumed to be occurring. The analysis in Sec. 6 does not predict any
truly periodic behavior, but the spiraling into the spurt attractor is shown to have a very
high frequency and slow decay rate, so that for practical polymer systems, it may very well
appear to be periodic and persistent. Furthermore, since these oscillations involve large
changes in the normal stresses, they could very well lead to “periodic distortions” in the
stream extruded from a die in which such behavior is occurring. Our prediction is that
the average “pertod” of such distortions would be proportional to the viscosity ratio, ¢;
however, because of the —& /¢ term in the denominator of Eq. (6.14), the apparent period
could vary significantly in time until the magnitude of the & contribution to the shear stress
is small compared to . The “ultimate period” is predicted to be inversely proportional to

T, to leading order.
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Even if it can be established that spurt is a distinct phenomenon from wall slip (or
other wall effects), our model is not the only possible alternative. Others have proposed
that spurt is related to non-monotone constitutive behavior (see for example Refs. (6], [15],

r [12]). The features of hysteresis deduced in Sec. 5D stand in marked contrast to other
plausible predictions of the nature of the hysteresis in spurt [12]; experiments could be
devised to verify which theory is correct.

Finally, the most important and perhaps the easiest experiment to perform to verify
our theory is to produce latency. Eq. (6.4) predicts long latency times for data correspond-
ing to realistic material data; no sophisticated timing device would be required, nor would
the onset of the instability be hard to identify. The increase in throughput is predicted to
be so dramatic that simple visual inspection of the exit flow would probably be sufficient.

8. Conclusions

Phase-plane and small parameter asymptotic techniques have been used to analyze
single and two relaxation-time models that approximate the behavior of highly elastic
polymeric liquids in shear flow through slit dies driven by a pressure gradient. Results of
the analysis show that both models exhibit the same qualitative features for realistic data
based on polymer melts. The results provide an explanation of the spurt phenomenon
observed exrerimentally; this explanation differs from “wall slip” in that it stems solely
from material properties of the polymer and not from the interaction of the polymer with
the walls. In addition. the analysis predicts new phenomena that should be observable
in new experiments: latency, shape memory, and hysteresis in cyclic loading and loading
that induces sudden flow reversals. The key to understanding the dynamics of the approx-
imating systems is fixing the location of the discontinuity in the strain rate induced by tke
non-monotone character of the steady shear stress vs. strain rate.

Although our analysis applies only to the special constitutive models we have studied,
we expect that the qualitative features of our results appear in a broad class of non-
Newtonian fluids. Qur analysis has identified certain universal mathematical features in
the shear flow of viscoelastic fluids described by differential constitutive relations that give
rise to spurt and related phenomena. Since we have seen that the qualitative features of
two models. (JSO), and (JSO;) are very similar in the range of interest, we choose to
describe the universal features by abstracting (JSO). The key feature is that there are
three widely separated time scales, each associated with an important non-dimensional
number (a. €, and 1, respectively), when scaled by the dominant relaxation time, A7!.
Each of these time scales can be associated with a particular equation in system (JSO):

Tparab ‘= phz’\/ﬂ' a = Tparab/\
Tshear ‘= 77/# € = TshearA (81)
Tnormal ‘= At 1 = Thormal -

Note that Tyhear can be associated with with py/\;, a secondary shear viscosity in sys-
tem (JS02). We assume that Tparab <K Tshear K Tnormal, aS in experiments of Vinogradov

et al. (17].

To see how these time scales are associated with specific equations, it is convenient to
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rewrite system (JSO)in the following equivalent form:

avy — 0y =€V + f
T-*—afozvt (z',t)dz’ (Z +1)
c =TT te

o —(Z+1) (8.2)

Zt+JT—a+aj§v,(g;"t)dx, g

Setting a = 0 in system (8.2) yields the approximating system (3.1): the extreme smallness
of Tparab allows us to disregard inertial effects of the first equation. So long as Z + 1 is not
O(¢), therefore, the effective relaxation time in the second equation is e. Consequently, o
achieves its steady or latent value on a time scale of order Typear. Finally, as a consequence
of the third equation, Z tends either to a classical steady state value (less than —1/2), or,
in case of spurt, to a value near —~1 with effective relaxation time 1. We conclude that it is
this general structure of evolution equations governing the flow that causes the approach
to spurt to have three distinct phases.
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